
System Introspection for

Micro-Services Pentests in K8S

1. Introduction to the “in-between” world
2. Capturing Component System Interactions
3. Micro-Services Pentesting in K8S 101
4. How-To Falco & My Favorite SRE
5. Pros, Cons, & WhatNot
6. Conclusion & Kudos

1

@TheLaluka

thinkloveshare.com

offenskill.com

Introduction to the “in-between” world

2

The root of evil: “You & I are safe, so we are safe”

3

The “in between”: Examples

● File upload + SSH server with key

● FTP service + PHP server

● Fetch by URL + Cloud Infra

● URL parser front != URL parser back

● Admin iface on loopback + Proxy service

● Customizable username + PDF export

● PNG file upload + PHAR format

4

The “in between”: Primitives & Detection

5

The “in between”: Primitives & Detection

6

The “in between”: Pick your BOX, but stay blind.

7

Capturing Component System Interactions

8

9

10

11

12

13

Micro-Services Pentesting in K8S 101

14

The pentest I Know Vs The one I Fear

15

Totally stolen yet accurate graphs

16

More Complexity → More Bugs More Complexity → WTF’s happening ?

17

Huge structures have the more -security- bugs

Huge structures offer no “easy assumptions”

How can we bring our magic-glasses to K8S?

18

19

How-To Falco & My Favorite SRE

20

Falco containers services

21

● Falco agent

○ Monitor kernel events base on custom rules

● Falco sidekick

○ Take Falco events and forward to different output (Slack, Prometheus, Kafka …)

● Falco Web UI (Optional)

○ Simple web ui to displaying latest event

● Redis (Optional)

○ Store Falco events for Falco Web UI

Falco on Kubernetes

22

Hello Helm chart !

23

A little bit of Magic !

24

Kustomize

From Falco’s yaml rules-file … to Kubernetes ConfigMap

Houston we have a problem !

25

SlackDatadog TopList & Logs

26

DEMO

27

28

https://docs.google.com/file/d/1nsfw790TyUZekwvVBXwl8YiqSffIeD4V/preview

Pros, Cons, & WhatNot

29

Costs

30

● Resource overhead: Use the Kubernetes cluster resources (CPU/Memory/Network)

● Storage: Need to store the logs and events generated by Falco

● Deployment and management: Keeping Falco up to date, setup alerts, rules

● Training and skill development: Create rules, interpret alerts, setup Falco

● Integration: Monitoring and other security solutions

Limitations

31

● Kernel or eBPF features

● Limited scope

● Complexity

● Customization

● False positives

● Performance impact

● Community and support

Results

32

● Default rules:

○ Crystal Clear cluster vision

● Custom rules:

○ Migration from IMDSv1 to IMDSv2

○ Containerd Socket Observability

○ Red-Team “Blind” Fuzzing

○ WebShells Trusted Alerting

○ Fast detection time for *any event*

Instabilities

33

● High memory usage of some Falco features

● Log tempest

● Load external kernel module

● Kernel < 5.8 need privileged access

● More complexity

On-Call & Incident Switch-Army-Knife

34

● Have an historic of weird events during an incident

○ Shell opened in a pod

○ Http request received/sent

○ Files used

● Reproduce and analyse

● Alerts for anomalous activity to on-call Devops

● Monitor service response during security fuzzing

Conclusion & Kudos

35

Increase Observability & Find More Bugs!

36

● If you are a pentester you will

○ Start loving breaking things again

○ Benefit from a huge time gain

○ Coder a wider attack surface

● If you are a company you will have

○ A small yet very powerful SoC

○ A powerful way to diagnose anything system-related

○ More findings if you provide this during pentests ! 🎁

System Introspection for

Micro-Services Pentests in K8S

37

@TheLaluka

thinkloveshare.com

offenskill.com

