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Introduction to the “in-between” world
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The root of evil: “You & I are safe, so we are safe”
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The “in between”: Examples

● File upload + SSH server with key

● FTP service + PHP server

● Fetch by URL + Cloud Infra

● URL parser front != URL parser back

● Admin iface on loopback + Proxy service

● Customizable username + PDF export

● PNG file upload + PHAR format
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The “in between”: Primitives & Detection
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The “in between”: Primitives & Detection
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The “in between”: Pick your BOX, but stay blind.
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Capturing Component System Interactions
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Micro-Services Pentesting in K8S 101
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The pentest I Know   Vs   The one I Fear 
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Totally stolen yet accurate graphs
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More Complexity → More Bugs More Complexity → WTF’s happening ?
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Huge structures have the more -security- bugs

Huge structures offer no “easy assumptions”

How can we bring our magic-glasses to K8S?
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How-To Falco & My Favorite SRE
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Falco  containers services
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● Falco agent

○ Monitor kernel events base on custom rules

● Falco sidekick

○ Take Falco events and forward to different output (Slack, Prometheus, Kafka … )

● Falco Web UI (Optional)

○ Simple web ui to displaying latest event

● Redis (Optional)

○ Store Falco events for Falco Web UI



Falco on Kubernetes
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Hello Helm chart !
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A little bit of Magic !
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Kustomize

From Falco’s yaml rules-file  … to Kubernetes ConfigMap



Houston we have a problem !
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SlackDatadog TopList & Logs
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DEMO
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https://docs.google.com/file/d/1nsfw790TyUZekwvVBXwl8YiqSffIeD4V/preview


Pros, Cons, & WhatNot
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Costs
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● Resource overhead: Use the Kubernetes cluster resources (CPU/Memory/Network)

● Storage: Need to store the logs and events generated by Falco

● Deployment and management: Keeping Falco up to date, setup alerts, rules

● Training and skill development: Create rules, interpret alerts, setup Falco

● Integration: Monitoring and other security solutions



Limitations
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● Kernel or eBPF features

● Limited scope

● Complexity

● Customization

● False positives

● Performance impact

● Community and support



Results
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● Default rules:

○ Crystal Clear cluster vision

● Custom rules:

○ Migration from IMDSv1 to IMDSv2

○ Containerd Socket Observability

○ Red-Team “Blind” Fuzzing

○ WebShells Trusted Alerting

○ Fast detection time for *any event*



Instabilities 
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● High memory usage of some Falco features

● Log tempest

● Load external kernel module

● Kernel < 5.8 need privileged access

● More complexity



On-Call & Incident Switch-Army-Knife
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● Have an historic of weird events during an incident

○ Shell opened in a pod

○ Http request received/sent

○ Files used

● Reproduce and analyse 

● Alerts for anomalous activity to on-call Devops

● Monitor service response during security fuzzing



Conclusion & Kudos
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Increase Observability & Find More Bugs!
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● If you are a pentester you will

○ Start loving breaking things again

○ Benefit from a huge time gain

○ Coder a wider attack surface

● If you are a company you will have

○ A small yet very powerful SoC

○ A powerful way to diagnose anything system-related

○ More findings if you provide this during pentests ! 🎁
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